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The vortex method is extended to obtain solutions of the variable 
density vorticity transport equation in cases when vorticity is generated 
by the action of gravitational body forces as well as inertial baroclinic 
effects. The convection of a scalar, in this case density, is simulated 
using the transport-element method. Similar to the vortex method, this 
is a grid-free, Lagrangian field method in which scalar gradients are 
transported along particle trajectories while being modified according 
to the distortion of the flow map. Results are obtained for a Rayleigh- 
Taylor flow evolving by the action of gravity on a finite temperature 
gradient. The numerical solution is validated by comparing the growth 
rate of small perturbations to the results of the linear stability analysis of 
this flow. Numerical solutions within the nonlinear range are analyzed 
to study the effect of density ratio on the rollup of the voriticity layer and 
the mixing which follows this process. 0 1992 Academic Press. Inc. 

I. INTRODUCTION 

In this article we study the evolution of the Rayleigh- 
Taylor instability of a finite-thickness fluid layer across 
which a smooth, monotonic temperature distribution exists 
between a hot gas on the lower side and a cold gas on the 
upper side. This layer is formed by molecular diffusion 
which acts to smooth out a temperature discontinuity 
between the two gases. We will neglect the effect of 
molecular diffusion during the evolution of the instability 
assuming that convective time scales are much smaller than 
diffusive time scales. The gas flow is assumed to be at low 
Mach number and compressibility effects associated with 
the propagation of sound waves are neglected; i.e., the flow 
is incompressible with finite density gradients. We will 
concentrate on two-dimensional solutions during the early 
and late stages of the instability. 

At the early stages, there is no shear or potential velocity 
present and the flow is driven by gravity. Kinematically, this 
is equivalent to saying that buoyancy drives the flow and 
that the vorticity production at the initial stages is due to 
barostatic effects. The cases considered here have high tem- 
perature ratios across the layer, from two to nine, and hence 
non-Boussinesq effects are important. In particular, vor- 

ticity generation due to the baroclinic torque, which evolves 
as material elements accelerate in a variable density field, 
becomes important. We will show that the redistribution of 
vorticity by the baroclinic torque at the later stages of 
development plays an important role in the mixing between 
the two streams. 

For the purpose of simulating these density-stratified 
flows, we developed the transport-element method [l]. In 
this method, vorticity generation due to baroclinic effects 
associated with the interaction between density gradients 
and pressure gradients is retained in the formulation. The 
evolution of density gradients is computed using the trans- 
port-element method in which particles are employed to 
convect the scalar gradients along with voriticity [2, 33. In 
this article, we develop a conservative version of this 
method suitable for the problem under discussion. Both 
methods can be generalized to study different forms of shear 
flow in two and three dimensions [47]. 

Using density discontinuity to model this flow has been 
suggested by many investigators to analyze the early stages 
of development of the flow. The same model has been suc- 
cessfully implemented in elaborate numerical studies using 
vortex representation to study the nonlinear development of 
this flow. For a comprehensive review and recent develop- 
ments we refer the reader to Refs. [S-lo]. In this work, we 
focus on situations where the zone of density variation has 
a finite thickness in the vertical direction. We also develop 
the linear analysis of the same flow to check the numerical 
solution during the early stages of the flow. 

The article is organized as follows. In Section 11, the for- 
mulation of the physical model is reviewed. In Section 111, 
the extension of the vortex method to density-stratified flow 
is described and formulation of the transport-element 
method for the convection of passive scalar is presented. In 
Section IV, solutions of the Rayleigh-Taylor flow generated 
by the action of gravity on a finite temperature gradient in 
an unstably stratified flow are analyzed in detail. Conclu- 
sions are presented in Section V. 
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II. FORMULATION 

11.1. Governing Equations 

The nondimensional form of the governing equations for 
an unsteady, two-dimensional, nondiffusive gas flow are: 

pT= const. (1) 

u=u,+u, (2) 

v21j = --co; u,=vxtp (3) 

v2qsp = 0; u,=vc+4 
P 

do 1 
-$=pZ (VP XVP) 

dT z=o. (6) 

We assume that the flow is at low Mach number. The 
assumption of low Mach number flow states that the 
velocity of sound is much larger (infinite in the limit) than 
that of the flow and hence the pressure is equalized instantly 
across the flowlield. Therefore, spatial pressure variations 
due to the acceleration of the fluid are small in comparison 
to the total pressure and hence do not affect the local den- 
sity of the fluid. Under these conditions, the pressure term 
in the state equation is a function of time only and not of 
space. If the flow is in an infinite domain, the pressure can 
be assumed to be independent of time and the product of 
density and temperature, for a perfect gas, reduces to a con- 
stant as in Eq. (1). Moreover, the pressure term in the 
energy equation is neglected in comparison to the other 
terms as in Eq. (6). Although the low Mach number 
assumption is used to decouple the density from spatial 
pressure variations, the pressure term is still retained in the 
equation of motion to balance the momentum changes in 
the flowlield as shown in Eq. (5). This is because, in the 
momentum equation, the pressure term is of the same order 
of magnitude as the fluid acceleration. The fluids in both 
streams are assumed to behave as perfect gases with equal 
molecular weights and constant specific heats. The 
Reynolds number is high and hence the effect of viscosity 
and molecular diffusion are neglected beyond t = 0. For the 
details of the derivation of Eqs. (l)-(6), see [ 11-131. 

The definitions of the symbols are as follows: d/dt = 
a/at + u . V is the Lagrangian derivative along a particle 
trajectory, t is time, p is the local fluid density, u = (u, v) is 
the fluid velocity, x = (x, y) is the space coordinate, x and y 
being the horizontal and vertical directions, respectively, 4 
is a velocity potential, w = $e, is a streamfunction defined 
such that u, = Vxyr, where o = Vxu is the vorticity, e, is the 
unit vector normal to the x-y plane, and II, is a potential 
velocity, V. u, = 0, added to satisfy the normal velocity 
boundary conditions across the boundaries of the domain. 

V and V2 are the gradient and the Laplacian operators, 
respectively. Variables are nondimensionalized with respect 
to an appropriate combination of a characteristic density 
p,,, velocity U,, and length L,. For the Rayleigh-Taylor 
flow we use the parameters po=ph the (higher) density of 
the top stream, u0 = z, where L, = J? S and S is the 
characteristic thickness of the initial density distribution 
and gr is the gravitational acceleration, and p0 = p0 Vi for 
the pressure. 

Equation (5) is derived by taking the curl of the momen- 
tum equation: 

du 
-= -VP/p-j 
dt 

where j is the unit vector in the vertical y-direction. We also 
note that Eq. (7a) can be rewritten as 

VP=-p $+j 
( > 

which explicitly relates the pressure gradient to the material 
and gravitational acceleration. Furthermore, Eqs. (1) and 
(6) can be combined to show that 

4 
z = 0, 

indicating that the density is constant along the material 
particle trajectory, p(x(X, t) = p(X, 0), where x(X, t) is the 
coordinate of the particle starting at x = X at t = 0. 

III. NUMERICAL SCHEMES 

111.1. The Vortex Methodfor a Variable-Density Flow 

The vortex method is used to solve the vorticity transport 
equation. We start by deriving an expression for the velocity 
distribution induced by a given vorticity field. If the domain 
is unbounded then the solution of Eq. (3) can be written as 

$(x) = j G(x - x’) 0(x’) dx’, (9) 

where G is the Green’s function of the Poisson equation. In 
two dimensions, G = - 1/2x (In r), where r* =x2 + y*. The 
vertical component of the velocity is the curl of the stream- 
function, 

u,(x) = j K(x - x’) 0(x’) dx’, (10) 

where K = - 1/2nr2( - y, x) is the kernel of the Poisson 
equation. Equations (5) and (10) form the basis of the 
vortex method. At each time step, the vertical component 
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obtained from Eq. (10) is complemented with the potential 
velocity, constructed to satisfy the normal boundary 
conditions, to compute the fluid velocity which is then 
used in Eq. (5) to update the vorticity. One advantage in 
representing the flow in terms of vorticity is that the region 
of finite vorticity is usually confined to a small part of the 
flowtield, especially at high Reynolds numbers, and all the 
computational effort can be concentrated on resolving this 
region rather than discretizing the equations over the entire 
flow domain. Thus, the numerical resolution for a given 
computational expense is maximized. Vortex methods are 
Lagrangian methods wherein particles, which transport 
flow properties, are followed in time and space. Lagrangian 
schemes eliminate the necessity to deal with the non- 
linear convective terms explicitly, i.e., spatial derivatives 
constituting Vu are not required. 

To improve the accuracy and extend the application of 
vortex methods to highly unsteady flows with large strain 
rates, we formulated the vortex-element method [ 1, 2, 51. 
In this method, the vorticity is accurately discretized, using 
collocation methods, among finite area elements that move 
along particle trajectories. Each element transports a finite 
amount of vorticity. The distribution of vorticity associated 
with each element is described by a radially symmetric func- 
tion,f,, with a characteristic radius, 6, such that most of the 
vorticity is concentrated within r < 6, where r is the distance 
measured from the center of the element. Vortex elements 
are initially distributed over the area of the flow where 
101 > 0 such that the discretization error is less than a 
predetermined tolerance parameter E. Typically E is around 
10A5. The strength of the vortex element is determined by 
collocation; for the element located at Xi, the vorticity, 
denoted by wi, is obtained from the solution of the system 
of equations: 

0(x, O)= i 0ih2h(lx-xil)~ (11) 

,=l 

where o(X, 0) is the vorticity distribution at t = 0. The core 
function, fh, is chosen to be a second-order Gaussian, given 
byf,(r) = (l/n 6’) exp( - r2/d2). Note thatf, is a function of 
the absolute value of the distance between the element and 
the point. The absolute sign will be suppressed for con- 
venience. Equation (11) is equivalent to expanding a func- 
tion w(x) in terms of a number, N, of kernel functions, fd, 
located at Xi and with weights rr=coih2, and h is the 
distance between the centers of neighboring elements. The 
accuracy of the discretization depends on the choice of the 
core functionf,, the initial distribution of the particles, the 
method of determining the initial values of values of oi or 
ri, i = 1, 2, . . . . N, and the ratio 6/h. The selection of the core 
function for a particular accuracy was extensively discussed 
in Refs. [2, 14-161. Accurate discretization and long time 
accuracy of the computed flowtield require that 6/h > 1. 

For an initially smooth distribution of vorticity, we found 
that 6/h = l&1.3 is sufficient to limit the discretization 
error to the desired value, E [Z]. Note that although the 
core function is constructed as a rapidly decaying function, 
such as an nth-order Gaussian, the fields of individual 
vortex elements are strongly overlapping due to the choice 
of 6/h. Thus, according to Eq. (11) the local value of the 
vorticity at a point is determined by the contributions of 
all the elements in the field. Therefore, the vorticity at any 
point in the flowfield at any time is determined by 

r=l 

where Ti = wih2 is the total circulation of an element and is 
obtained as a function of time from the solution of the vor- 
ticity transport equation as will be shown next, h is the 
geometric average of the distance between the centers of 
neighboring elements in the two perpendicular directions, 
and xi is the trajectory of the particle. The velocity field of 
a distribution of vortex elements is obtained by substituting 
Eq. (12) into Eq. (10) and integrating. The resulting expres- 
sion is 

“,(X9 t) = g r;(t) K,(x - Xi(Xi, t)) (13) 

and 

i=l 

K,(x)= -wf) 

r 

“s 0 = 1 - exp( -r2/d2), 

where Eq. (15) is obtained for second-order Gaussian 
elements. 

Depending on the nature of the flow domain, a potential 
component must be added to u, in order to satisfy the nor- 
mal velocity boundary conditions. For all the cases com- 
puted in this study, the flow is infinite in the y-direction and 
infinitely periodic in the x-direction with a periodicity 
length 2. The potential component is obtained by taking 
into account the velocities generated by an infinite number 
of images in the x-direction for each computational element 
in the domain. The total velocity is given as 

N z-j *’ (dy, -(dx+jA)) u=c - c 
1=1 [ { 27c j-0 ((dx+jA)2+dy2) 

xexp - ( 
((dx+jA)2+Ay2 +?J 

S2 > /I 

x (-sinh(2n dy/l), sin(2n AX/~)) 
(cosh(2n dy/il) - cos(27r Ax/,?)) >I ’ (16) 
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where dx=x-xi, dy= y- yi, N is the total number of 
computational elements in the domain 0 -C x < A. Since the 
core function, fa, is a rapidly decaying function, its effect is 
included only for the nearest images on both sides of the 
domain. The above expression is used to compute the 
velocity at the center of each computational element in 
order to displace the elements along the particle path 
according to: 

For a barotropic, or uniform-density flow, the vorticity and 
circulation of each element is conserved along the particle 
path and is independent of time, and hence wi (t) = ~~(0). 

As time progresses, the generation of strong strain with 
the growth of perturbations into the non-linear stage 
increases the distance between neighboring elements, 6x, in 
the direction of maximum strain beyond the desired value 
of h. Thus, the accuracy of spatial discretization, which is 
governed by 6/h, is adversely affected. In the computations, 
deterioration of accuracy is observed in the generation of 
disorganized, random motion, on the scale of h, which 
grows as time progresses. To avoid this problem, more 
elements are introduced where 6~ > Bh, where /I N 1.5, and 
the circulation of the original two elements is locally 
redistributed among the newly introduced elements. Since 
the circulation of each element is wih2 and since the vor- 
ticity is conserved along a particle path, the redistribution of 
circulation is accomplished by dividing the value of h* of the 
original two elements equally among the newly generated 
elements and the original elements. By increasing the num- 
ber of vortex elements, we ensure that the underlying grid of 
computational elements can capture the instantaneous vor- 
ticity distribution as it evolves with the motion of the flow. 
The need to increase the number of elements becomes clear 
when realizing that as the flow develops strong strains, the 
streamlines become strongly convoluted and require more 
particles to describe their geometry accurately [3, 181. 

The vorticity will remain constant along the particle path 
if the value of d2 is adjusted so that the ratio of d2/h2 is main- 
tained constant in Eq. (12). Thus, the core radius of an 
element is effectively decreased as the element is exposed 
to strong positive strain. Reducing the size of the cores of 
vortex elements helps minimize the numerical diffusion 
which may accumulate to unacceptable levels if the area on 
which the vorticity exists is allowed to grow beyond its 
original size. 

The redistribution of vorticity in the direction of maxi- 
mum tensile strain among more elements with smaller cores 
requires maintaining a list of near neighbors in the direction 
of maximum strain and updating this list each time step 
according to the changes in the vorticity distribution along 

the layer. This process is equivalent to utilizing a one- 
dimensional moving grid along each individual layer of vor- 
tex elements to preserve the organization of the computa- 
tions. It is also used to provide information about the flow 
map at any time step since, according to the condition of 
incompressibility, one can compute the changes in the 
length of the material layers normal to the line of vortex 
elements by knowing the extension of the elements in the 
direction of maximum strain. 

For a baroclinic flow, the vorticity is no longer conserved 
along the particle path. The interaction between the density 
gradient and the pressure gradient in Eq. (5) leads to the 
generation of baroclinic vorticity. In terms of the circula- 
tion, the change in total vorticity of a vortex element is given 
by 

, (18) 

where the pressure gradient in the baroclinic term is 
replaced by the inertial and gravitational acceleration using 
the momentum equation, Eq. (7b). The inertial acceleration 
of an element is computed by numerically differentiating its 
velocity between two time steps, and the local value of the 
density gradient and the density are computed using the 
transport-element method described in the next section. 

The computations of vorticity transport proceed in a frac- 
tional step scheme as follows: ( 1) vortex elements are trans- 
ported according to the velocity computed at their centers 
without changing the circulation or the size of individual 
elements; (2) the elements that experience strong strain are 
split (or combined if the strain is negative) and the values 
of the core and circulation of the original elements are 
distributed among the new elements; and, (3) Eq. (18) is 
integrated for each element according to the local accelera- 
tion, density, and density gradient to compute the new 
values of the element strength. 

We note that, as in any fractional step scheme, one has to 
be careful in choosing the time step, At, in order to preserve 
accuracy. This is because a fractional step scheme, without 
symmetric splitting, maintains accuracy O(At). Iteration 
may become necessary if the density ratio or the strain rate, 
which governs the rate of vorticity production, is large. In 
our calculation, however, we did not find it necessary to use 
iteration in any of the simulations presented below. Instead, 
we utilized a time step control strategy in which At was 
reduced when Awi = wi(t) - oi( t - At) exceeded a given 
fraction of o,(t). 

111.2. The Transport-Element Method 

Another application in the development of particle 
methods to variable density flows is the formulation of the 
transport-element method to compute the scalar distribu- 
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tion in a Lagrangian form. In this scheme, the gradient of 
the scalar field is discretized into a number of finite area 
elements using Eq. (12) with w replaced by g = Vs, where s 
is a conserved scalar such as the temperature or density. 
Similar to vortex elements, the transport elements are dis- 
tributed where (g( > 0 and are displaced along the particle 
path with the velocity computed at the centers of the 
elements. Each element transports a finite value of the scalar 
gradient and the value of the scalar is recovered as a 
summation over all the particles. The scalar gradient 
transported by each element is updated by integrating the 
gradient transport equation which is obtained by taking the 
gradient of the scalar transport equation. The conservation 
equation for a conserved scalar (such as temperature or 
density) can be written as 

as -&+u.vs=o 

where s is the conserved scalar. The transport equation for 
the scalar gradient is obtained by taking the gradient of the 
above equation, 

ag ~+u.vg+g.vu+gxcu=o: 

where g = Vs is the gradient of the scalar. Equation (20) is 
integrated for g as a function of time for each element. This 
requires the computation of the velocity gradient by analyti- 
cally differentiating Eq. (16). This process can be computa- 

tionally expensive if the number of elements in the field is 
large. Moreover, small errors in integrating Eq. (20) can 
lead to large errors in the scalar concentration. Another 
method is now proposed to compute g without integrating 
Eq. (20) and without the need to differentiate the velocity 
field. In this method, the information obtained from the flow 
map is used to update g. We start by rewriting Eqs. ( 19) and 
(20) along a particle path: 

ds 
z==o 

and 

& 
ii-- - -g.vu-gxo. 

Equations (21) and (22) show that while the scalar, s, is 
conserved along a particle path, its gradient, g, changes due 
to the action of the strain field and local vorticity. If the 
material is exposed to a strong strain in the direction nor- 
mal to the gradient, the value of g must increase by the same 
amount as the stretch in the material element. Figure la 
shows a schematic of a rectangular fluid layer with the 
initial scalar gradient perpendicular to the material length 
everywhere, the top and bottom sides of the element are 
isoscalar lines. Figure lb shows the same element after it has 
been deformed by a flowlield similar to what is encountered 
in a shear layer [2]. Since the scalar is conserved, material 
lines which were isoscalar lines must remain as isoscalar 

a 

-- 

-- 

time t 

-- 

time t+At 

- - 
time t+At 

h;(t) + 6,?,l(t) = #(t+At) + &t+At) + &(t+At) 

FIG. 1. (a) A material layer, of thickness &I, separating two constant scalar lines, S, and Sz. The layer is divided into eight transport elements, each 
with length 61. The gradient supported by this layer, and assigned to each element, is g = SS/Sn. (b) The same material layer after being exposed to strain 
and rotation (the streamwise coordinate is expanded), showing how g changes its value and direction with strain and rotation, respectively. The deforma- 
tion assumed in this illustration is of the type encountered in Kelvin-Helmholtz instability [2]. (c) The changes in the core radius of the transport 
elements due to the action of strain; r,,, is the maximum allowable distance between neighboring elements. 
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lines, i.e., the gradient must still be perpendicular 
everywhere to the material lines. The magnitude and direc- 
tion of g are indicated in Fig. lb. The magnitude of the 
gradient increases in regions of positive strain and decreases 
in regions of negative strain. Also, since the material lines 
are rotated due to the action of the flowlield, the direction 
of the gradient is rotated so as to maintain g perpendicular 
to the material lines. A mathematical expression relating g 
to the flowlield is now developed using the conservation 
equations. 

The magnitude of g can be calculated by deriving an 
equation that governs g= lgl. To do this, Eq. (22) is 
expanded in terms of gn, implementing kinematical rela- 
tions that describe the variations of n = g/g, the unit normal 
vector to the isoscalar line. After lengthy manipulations, 
the following expression is obtained (see Appendix I for 
derivation): 

& 
ii- - - gn . (n . Vu). (23) 

Moreover, g = (&/dn)n N (6s/&z)n, where 6s is the varia- 
tion of s across a small material line 6n. Furthermore, 
according to Eq. (21), a material line which is initially 
aligned with an isoscalar line will remain aligned with the 
same line. The variation of a material vector element 61 is 
governed by [20]: 

561 vu 
dt ’ ’ 

where 61= 611 and 1 is the unit vector along the material. A 
material line is also an isoscalar line, and 1 is perpendicular 
to n. For an incompressible flow, V . u = 0, it can be shown 
that the equation for 61 is given by 

da1 
-= -N(n.(n.Vu)). 
dt 



SIMULATION OF ROLLUP AND MIXING 

including the effect of the images: IV. THE RAYLEIGH-TAYLOR INSTABILITY 

N gig 
[ i 

+l 4x3 t) =;;, 2x’ c -((Ax +$), AY) 
,=,wx+~42+~Y2) 

( 
((dx+jq2+dyZ) 

xexp - 
d2 > 

+; 

(sin(2n Ax/n), -sinh(2rr dy/n)) 
’ (cosh(2n dy/A) - cos(2x Ax/A)) II ’ 

(31) 

This formulation is fully compatible with the vortex 
method since all the information needed to compute the 
scalar transport is already a part of the vortex computa- 
tions, including all the expressions for the Green functions. 
In actual computations, there is no need to distinguish 
between vortex elements and transport elements. A trans- 
port element can be used to transport either or both vor- 
ticity and scalar gradients. Once introduced, its vorticity 
and scalar gradients change according the appropriate 
expressions. The algorithm of the transport-element method 
proceeds as follows: (1) The velocity at the centers of the 
elements is calculated by summing the vertical and poten- 
tial components. This velocity is used to displace the 
elements along the particle path. (2) The magnitude and 
alignment of 61, is found for each element. Using this infor- 
mation, the new value of g is calculated from Eq. (28). (3) 
The core radii of the elements are updated according to the 
strain field. (4) The scalar is computed as a summation over 
all the elements according to Eq. (31). 

priOdic 
bomdary t-7 

caditicns I 

IV. 1. Definition 

Rayleigh-Taylor instability develops when two fluids of 
different densities are stratified in a field such that the den- 
sity gradient and the gravitational acceleration are not per- 
fectly aligned. Some phenomena in which RT instability 
occurs include: (i) the downwash of heavier air due to a tem- 
perature gradient in the atmosphere; (ii) the rise of a hot 
bubble in fires and explosions; (iii) the oscillation in a 
buoyant jet diffusion flame. In this work, we consider a 
finite-thickness layer separating two fluids at different tem- 
peratures. The layer is initially formed by the diffusion of 
heat from the hot fluid on the bottom to the cold fluid on the 
top side. The layer is the zone where p,, < p < pE, where ph 
and pC are the densities of the hot and cold fluid, respec- 
tively. For t > 0, we neglect diffusion, assuming that 
diffusive time scales are much larger than convective time 
scales. 

IV.2. Description of Flow Geometry 

A schematic for the flow in which the RT instability is 
analyzed is shown in Fig. 2. The density varies as an error 
function in the y-direction and the gravitational force acts in 
the negative y-direction. At t = 0, the fluid is stationary and 
the initial vorticity is zero. The layer between the two fluids 
is perturbed by a cosine wave. The flow is periodic in 
the x-direction with a periodicity length equal to the 
wavelength of the perturbation. The domain is infinite in the 
y-direction. 

I i 
I I I 

ccJnditicfls cunditiau 

FIG. 2. A schematic of the Rayleigh-Taylor instability in a gravitational field. The density of the top fluid is higher than that of the bottom fluid. 
The error function distribution on the right side is the density distribution at time t = 0. 
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In all the computations reported here, we used the follow- 
ing numerical parameters: the density layer is divided into 
15 rows in the y-direction; each row is discretized into 40 
elements, i.e., h = Jh,h, = 0.28. The core radius 6 is initially 
taken as 6 = 0.3 (= 1.07h). At t = 0, the strength of the 
elements are obtained by solving the linear system obtained 
from Eq. (11) for the vorticity and density gradients. Using 
this value of h/6, the difference between the total circulation 
and the sum over all the elements is less than l.E-0.5. The 
time step is At = 0.1. As the computation progressed into the 
nonlinear stages, At was reduced to control the accuracy. 
The ordinary differential equations describing the motion of 
the particles, Eq. (17), and the variation of the vorticity 
along the particle path, Eq. (18), are integrated using a 
fourth-order Runge-Kutta method with time step control. 
The inertial acceleration along a particle path is computed 
using a compatible numerical differentiation formula, i.e., a 
fourth-order formula based on the values of the velocity 
computed in the substeps of the Runge-Kutta integration. 
Convergence studies of the vortex element method were 
presented before and their results were used in the choice of 
the numerical parameters [Z]. 

IV.3. Linear Stability Analysis 

The Rayleigh equation for the linear stability of the linite- 
thickness RT problem is derived in the same way as for the 
finite-thickness Kelvin-Helmholtz instability except that 
the effect of gravity is included in the equations of motion 
[6]. Using the fact that the initial velocity is zero 
everywhere in the domain, the Rayleigh equation is reduced 
to 

(32) 

where v is the vertical velocity, R is the cross-stream density 
distribution, gr is the gravitational acceleration, c = c, + ic, 
is the complex wave speed, and IX= 2x/1 is the wavenumber. 
In this case, c, = 0 since the initial velocity distribution is 
zero and, ’ and M refer to the first and second order 
derivatives with respect to y. For a given value of the 
wavenumber, the solution for c (= ic,) is obtained by 
iteration [ 63. 

Results of the linear stability theory are shown in Fig. 3. 
The growth rate ( = -W-Y,), shown as solid lines, is obtained 
for three cases in which the density ratio rp = pC/p,, = 2, 3, 
and 9. The linear growth rate for a zero-thickness interface 
is given as n = ,,&, where A= (p,-p,,)/(pc+ph) is the 
Atwood number [ 171. The corresponding Atwood numbers 
for the cases considered here are 0.33, 0.5, and 0.8, respec- 
tively. The growth rate is smaller for the finite-thickness 
layer than for the infinitely thin layer. The reason for the 
reduction in the growth rate as the thickness of the density 
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FIG. 3. The linear growth rate of the RT instability as a function of the 
wavenumber. The three density ratios are rP = 2,3, and 9, with correspond 
to Atwood number A = 0.33,0.5, and 0.8, respectively. Solid lines represent 
the results of the linear theory for a finite thickness layer and broken lines 
are the results of the linear theory for a zero-thickness interface. The sym- 
bols are results of numerical simulations. 

layer increases is as follows. In the first case, vorticity is 
generated within a layer with a finite thickness while in the 
second case, a vortex sheet is generated. Vortex sheet 
instability is stronger than that of a vorticity layer. This 
is similar to the Kelvin-Helmholtz waves growing on a 
vorticity layer except that for the latter, there is a cutoff 
wavenumber, above which the waves do not grow. The 
absence of a cutoff wavenumber in the Rayleigh-Taylor 
instability is due to the absence of a restoring mechanism for 
short waves. 

IV.4. Results of the Numerical Simulations 

The simulation of Rayleigh-Taylor instability is per- 
formed using the transport-element method for rp = 2, 3, 
and 9, corresponding to A = 0.33, 0.5, and 0.8, respectively. 
The initial perturbation is imposed by displacing the 
elements in the y-direction in the forms of a cosine wave 
with a 90” phase angle. The wavelength of the perturbation 
is 2 = 13.2L,, where LO = $ S and S is the standard devia- 
tion of the Gaussian curve used to describe the initial den- 
sity-gradient profile. The amplitude of the perturbation is 
E = 0.12. Calculations were also done for a very small 
amplitude, E = 0.0005& in order to compare the results with 
the linear theory. The growth rates computed from the 
numerical simulations in the linear range are shown by the 
symbols in Fig. 3. 

IV.4.1. Atwood number = 0.33. The location and 
velocity of the transport elements are shown in Fig. 4 for 
r,, = 2, A =0.33, at t = 5.0, 8.0, 10.0, and 11.5. Since the 
elements are placed on isoscalar material lines, these plots 
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FIG. 4. The locations and velocities of the transport elements at t = 5.0, 8.0, 10.0, and 11.5, for A = 0.33 (rp = 2). 

also depict the deformation of the material lines within the 
layer. Isoscalar lines are obtained by computing the values 
of the scalar on a square mesh using Eq. (29) and then 
feeding the data into a standard contour plotting program, 
as shown in Fig. 5. This process generates contours which 
do not represent any changes smaller than the grid size used 
in the plotting. Since the flow is inviscid, the scalar contours 
could also be obtained by drawing lines connecting trans- 
port elements which have the same value of the scalar. The 
indirect method was used as a check on the accuracy of the 

scheme. The difference between the value of the scalar com- 
puted using the indirect method and its exact value did not 
exceed 0.1% at the late stages. 

The temporal development of the flow can be divided into 
four stages: (1) the initial perturbation is amplified due to 
the rise/fall of the light/heavy fluid without appreciable 
deformation within the layer; (2) the perturbation continues 
to grow maintaining antisymmetry between the light and 
heavy fluid but the thickness of the temperature gradient 
zone starts to change indicating the onset of currents within 
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FIG. 5. The normalized temperature contours (T= l/p) at t = 5.0, 8.0, 10.0, and 11.5, for A = 0.33 (rp = 2). 
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FIG. 6. The streamline contours at t = 5.0, 8.0, 10.0, and 11 S, for A = 0.33 (rp = 2) 
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the layer; (3) the layer rolls up at the midpoints between the 
highest and lowest peaks and the fluid originally within the 
layer migrates towards these points; and (4) the layer con- 
tinues to roll up forming large eddies which move vertically 
downwards. At the late stages, the boundaries of the large 
eddies develop smaller eddies. 

The development of the familiar mushroom-shaped 
instability is observed during the second and third stages, 
with the layer forming two symmetric structures on both 
sides of the mushroom. The two eddies develop as a result 
of an instability which resembles the Kelvin-Helmholtz 
instability. The symmetry across the vertical line, which was 
not enforced in the calculations, ensures that the total vor- 
ticity in the domain is always zero. The part of the layer that 

VORTlClTY ALONG INTERFACE 
STEP- 50 TIME- 5.00 

-1 

IllSTANCE RLONG INTERFACE 

VORTICITY ALONG INTERFACE 
STEP- 110 TIME- 10.00 

: 
-1 

moves into the dense fluid is referred to as the “bubble” and 
the one that moves into the light fluid is referred to as the 
“spike.” For all values of rp, the simulations were performed 
until the spike of the high density fluid reached a depth of 
approximately - 10.0 in nondimensional units. Simulations 
beyond this point required a very large number of elements 
and a very small time step due to the large strain rate and 
material acceleration. 

The eddies that develop on both sides of the mushroom 
entrain *more of the low-density fluid by volume, as was 
observed in the case of a variable density shear layer. This 
is evident from the fact that material layers on the light fluid 
side undergo more distortion than those on the heavy 
fluid side (Figs. 4 and 5, t = 11.5). The tongue of light fluid 
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STEP- 80 TIME- 8.00 

DISTANCE RLONG INTERFACE 

VORTICITY RLONG INTERFACE 
STEP- 140 TIME- 11.50 

:iSTRNCE ALONG INTERFACE 

FIG. 7. The least squares fit of the vorticity distribution along the central layer at t = 5.0, 8.0, 10.0, and 11.5, for A = 0.33 (rp = 2). 
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penetrates further into the large structure than that of heavy 
fluid. The structures form initially very close to y = 0. As 
they grow, the eddies move downwards. The asymmetry of 
these eddies is connected with the unequal penetration of 
the bubble and spike into the cold and hot fluids, respec- 
tively. The origin of this asymmetry can be best revealed by 
inspecting the vorticity distribution. 

Vorticity contours are shown in Fig. 6. Vorticity genera- 
tion takes place according to Eq. (5). At the early stages, the 
interaction between the gravitational acceleration and the 
density gradient leads to the generation of positive vorticity 
on the left side of the domain and negative vorticity on the 
right side. However, at later times, negative/positive 
vorticity is generated on the left/right part of the domain, 
respectively, due to the interaction between the inertial 
acceleration and the density gradient. Vorticity generated in 
the braids between the eddies is entrained into their cores 
during rollup. The maximum values of vorticity occur at the 
centers of the structures. 

At the late stages, the vorticity distribution within each 
eddy is nonsymmetric around its center. As an example, we 
take the structure on the right-hand side. Within this struc- 
ture, gravity-generated vorticity at the initial stages is 
negative. At later times, the vorticity is higher on the left side 
than on the right side of the eddy. This is due to the genera- 
tion of vorticity by the baroclinic term, a x Vp/p, where a is 
the material acceleration. It is easy to demonstrate why this 
term should be positive on the right upper side of the eddy, 
thus reducing vorticity due to gravity, j x Vp/p, while it is 
negative on the left lower side, thus enhancing the gravity- 
generated vorticity. This asymmetric distribution of vor- 
ticity within the eddy leads to the asymmetric entrainment 
and the downward motion of the center of the eddy. This 
kinematical argument will be supported by a dynamical 
argument in the next few paragraphs. 

i 

0.0 2.5 5.0 7.5 10.0 12.5 0.0 2.5 5.0 7.5 10.0 12.5 
TIME T 1 PIE 

t 

Figure 7 shows the vorticity distribution along the central 
layer for t = 5.0, 8.0, 10.0, and 11.5, respectively. The vor- 
ticity and the distance along the layer are normalized by 
their corresponding maximum values at each time step. The 
vorticity distribution develops smoothly at the initial stages 
with peak values occurring at the centers of the rolling 
structures. At later stages, due to inertial acceleration, the 
distribution along the layer develops extra peaks. For t > 5, 
there are two maxima on both sides of the mushroom. 
Moreover, vorticity has a higher peak along the inner fold 
of the mushroom, or the spike, than along the outer edges 
of the mushroom head, or the bubble. This is because 
vorticity generation by inertial acceleration is uneven. 

As a measure of the growth of the instability, we plot the 
cumulative circulation in the field in Fig. 8. The positive and 
negative components of the circulation are summed 
separately. The circulation increases from its initial value of 
zero, and equal amounts of positive and negative circulation 
are generated. The rate of increase of circulation rises after 
rollup. Another measure of the growth of the instability is 
the total entrainment into the large structures. This can be 
determined from the value of the streamfunction of the 
outermost closed contour, or from the total length of the 
material layer. Figure 9 shows the streamlines over a single 
wavelength of the perturbation. The volumetric entrain- 
ment into the large structures is indicated by the increase in 
the number of closed streamlines around the center of the 
structure. The central vertical streamline is assigned a value 
of zero so that the streamfunction at the center of the struc- 
ture can be used as a measure of volumetric entrainment. 
The nondimensional streamfunction at the core of the eddy 
at t = 11.5 is e. = 7.85. 

The straining of the material lines with the growth of the 
instability is shown in Fig. 10. The mean length of the “inter- 
face,” defined as the total length of all the material layers 

Az0.8 o’5 0.33 

FIG. 8. (a) The cumulative circulation in the flow field. The positive and the negative components are summed separately; (b) same as in (a) but 
on different scales. 
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FIG. 9. The vorticity contours at t = 5.0, 8.0, 10.0, and 11 S, for A = 0.33 (rP = 2). Broken lines represent positive vorticity and solid lines represent 
negative vorticity. 
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FIG. 10. The normalized mean length of the material layers. 

used in the calculations normalized by their length at t = 0, 
is shown as a function of time. The length of the interface at 
t = 11.5 is about seven times the initial length (15n). The 
slope of the curve grows with time, indicating that the rate 
of elongation, or average strain, increases. 

The evolution of the flow is shown by positions of the 
highest and lowest points at both the highest section of the 
bubble and the lowest section of the spike, in Fig. ila. To 
compare the results of the finite-thickness layer with those 
of the infinitely thin interface, we show the mean average of 
the extreme positions of all the computational layers at the 
top of bubble and the bottom of the spike in Fig. 1 lb (since 
15 layers are used, each point represent an average over 
15 y-locations). The motion of both sections of the waves, 
the spike and the bubble, grows unequally beyond the linear 
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FIG. 11. (a) The highest and lowest positions of the bubble and the spike as a function of time for A = 0.33 (rp = 2). The highest position is shown 
by the continuous curve and the lowest position by the broken curve. (b) The mean positions of the bubble and the spike for A = 0.33 (rp = 2). 

range. The strain associated with the rollup of the large 
eddies reduces the thickness of the layer at these extreme 
positions. The thinning of the layer is associated with the 
generation of internal currents, or the entrainment of the 
fluid into the large eddies. 

Figure 12 shows the highest absolute values of (a) the 
bubble and (b) spike velocities, obtained by calculating 
the vertical velocity at the tips of the two structures 
(representing the derivatives of the continuous lines in 
Fig. 1 la). In Fig. 13, velocities at (a) the top of the bubble 
and (b) the bottom of the spike, obtained as an average over 
the velocities of all the layers within the extremes of the 
bubble and the spike, are shown. The mean bubble velocity 
reaches an asymptotic value around t - 7, while the mean 
spike velocity reaches its asymptotic value around t - 7.5. 
Moreover, the mean spike velocity is higher than that of the 
bubble. The reason for this is described next. 

We have presented a kinematical argument to explain the 
asymmetry between the bubble and the spike on the basis of 
the vorticity generation mechanism. This argument is now 
extended to explain the difference between the bubble and 
the spike velocities. As indicated in Fig. 4, the eddies are 
pushed downward towards the spikes. Thus the velocity 
induced on the latter is smaller than that induced on the 
former. While we prefer this argument, the following 
dynamical argument, which is based on the similarity 
between the flow around the bubble and the spike and that 
of a separated flow around a bluff body, was offered in the 
literature [ 181. The pressure drag on these virtual bodies is 
proportional to the size of the body, defined approximately 
by the radius of curvature, the density of the medium it is 
moving into, and the velocity of the body. Results show that 
the size of the bubble is slightly larger than that of the spike 
and it is moving into a denser fluid. Thus, the pressure drag 

b 
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FIG. 12. (a) The velocity at the highest point of the bubble; and (b) the velocity at the lower point of the spike. 

on the bubble is larger than the drag on the spike, its IV.4.2. Atwood number = 0.5. The location and 
velocity is smaller, and it reaches its asymptotic value faster velocity of the transport elements for rp = 3, A =0.5, is 
than the spike. shown in Fig. 14 at t = 5.0, 7.0, 7.85, and 8.6. Compared to 

The normalized asymptotic mean value for the bubble the case A =0.33, we observe the following: (1) The 
velocity Ubn = U/(G) = 0.29. Kerr [lo] obtained instability develops faster; the tip of the spike reaches 
Ubn = 0.27 for a density interface using a vortex sheet y = - 10.0 at t = 8.6, as predicted by the linear theory. 
method. The discrepancy between the tip and the mean (2) The extent of the rollup is decreased. (3) The size of 
value of the bubble velocity can be attributed to the relative the bubble is much larger than that of the spike, i.e., the 
motion of the material layers during the growth of the symmetry of the flow is enhanced at higher density ratios. 
instability. Experimentally, the asymptotic bubble velocity (4) The structures are formed at a lower elevation. (5) More 
is found to be between 0.2 and 0.3 [S]. The peak value of the of the light fluid is entrained into the eddies than of the 
normalized mean spike velocity is U,, = 0.45, occurring at heavy fluid. These changes can be explained by analyzing 
t = 7.5 (Fig. 12b). The value obtained in Ref. [lo] is the vorticity distribution (not shown) and are connected 
Us,, = 0.44, occurring at t = 8.5. The latter is close to our with the baroclinic vorticity generated in the nonlinear 
computed value, 0.435, for the spike tip, shown in Fig. 12b. stages of the instability. 
It is interesting to note that these values are independent of Similar to the previous case, vorticity of the opposite sign 
the perturbation wavelength. to the gravity-generated vorticity is created by the 
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FIG. 13. (a) The mean velocity at the top of the bubble; (b) the mean velocity at the bottom of the spike. 
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FIG. 14. The locations and velocities of the transport elements at t = 547.0, 7.85, and 8.6, for A = 0.5 (r. = 3). 

baroclinic torque on the bubble side of the mushroom and Volumetric entrainment, as obtained from the value of 
with the same sign of the gravity-generated vorticity on the the streamfunction at the center of the eddy, is higher than 
spike side. Thus, higher vorticity is established in the inner in the first case, I),, = 9.3 at t = 8.6. Entrainment is larger 
side of the eddies than in the outer side. The asymmetric despite the fact that the rollup has been reduced. The tem- 
vorticity distribution generates a finite convective velocity perature contours confirm that more light fluid is ingested 
that forces these eddies downwards towards the light into the cores than heavy fluid and that the entrainment 
fluid. This, as will be shown later, is a non-Boussinesq ratio increases for larger values of A. The distance between 
effect. Results of this case will be discussed further in the same scalar contours within the region of the spike is 
Section IV.4.4, in connection of results of the Boussinesq smaller than within the region of the bubble. This, as shown 
approximation. in the previous section, is due to the accumulation of 
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vorticity in the lower part of the mushroom leading to 
higher strains within the spike. 

The asymptotic mean bubble velocity, shown in Fig. 13a, 
is Ub,, = 0.255 which compares well with the value of 0.26 
obtained in Ref. [9] in the simulation of an RT instability 
of a density interface using the vortex-in-cell method. A 
possible reason for this agreement is that vortex-in-cell com- 
putation introduces a numerical finite thickness in the 
simulations of a infinite interface. Although the calculations 
had to be stopped before the spike could attain its 

0.0 6.6 13.2 19.1 26.4 

X-D1 STANCE 

t - 3.0 

asymptotic velocity, the peak spike velocity is Ui, = 1.3 
which corresponds to U,, = 0.5. The peak spike velocity 
obtained in Ref. [9] is U,, = 0.48. 

IV.4.3. Atwood number = 0.8. The location and 
velocity of the transport elements are shown in Fig. 15 at 
t = 3.0, 4.25, 4.75, and 5.25. The spike reaches y = - 10.0 at 
t = 5.25. The fast penetration of the spike into the light fluid 
allows little time for the rollup of the structures due to the 
KH instability (as the density ratio approaches infinity, i.e., 
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FIG. 15. The locations and velocities of the transport elements at t = 3.0,4.25,4.75, and 5.25, for A = 0.8 (rp = 9). 
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FIG. 16. The vorticity contours at t = 3.0,4.25,4.75, and 5.25, for A = 0.8 (rp = 9). Broken lines represent positive vorticity and solid lines represent 
negative vorticity. 
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the case of a free fall of a fluid into vacuum, the net pressure Figure 16 shows the vorticity contours. As in previous 
gradient, and hence the baroclinic term would be zero cases, vorticity is weaker along the sides of the bubble and 
everywhere in the field thus preventing rollup). It appears stronger along the sides of the spike. A steep gradient of vor- 
that gravity, in a strongly accelerating flow at high density ticity forms as vorticity generation within the spike inten- 
ratios, acts to stabilize the KH instability. The bubble is sifies. This is shown by the vorticity distribution along the 
larger than the spike and the rollup instability forms at a central layer depicted in Fig. 17. This situation, which 
lower elevation as compared to previous cases. Further- resembles a shockwave in gas dynamics, makes it very 
more, higher gradients are formed within the spikes. The expensive to continue the calculations beyond t = 5.25. The 
intensification of scalar gradients within the spike leads to number of transport elements added along individual layers 
numerical complications, and higher temporal and spatial to capture the strain field exceeds that used in the previous 
resolutions must be provided. 
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FIG. 17. The least squares fit of the vorticity distribution along the central layer at t = 3.0,4.25,4.75, and 5.25, respectively, for rP = 9 
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FIG. 18. The streamline contours at I = 3.0, 4.25, 4.75, and 5.25, for A = 0.8 (rp = 9). 
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nearly zero. This asymmetry is due to the effect of the tiO = 9.75. The migration of the structure to lower elevations 
baroclinic torque that alternately opposes and enhances the is clearly observed from the streamline contours. 
existing vorticity in the bubble and the spike, respectively. The mean velocity of the bubble at the final time from 

Figure 18 shows the streamline plots. Although there is Fig. 13a is U,, = 0.27. The value obtained by Kerr [9] for 
little rollup, the entrainment, as indicated by the amount of rp = 9 is 0.23. This is close to our value for the tip velocity, 
fluid circulating around the eddy center increases. The shown in Fig. 12a, Ubn = 0.235. The computation of the RT 
streamfunction at the center of the structure at t = 5.25 is instability of a thin interface evidently produces results 

U-J m 

d d 

0 93 

h’ t-: 

ln 
6 
-T 

0.0 6.6 13.2 19.6 26.4 0 0 6.6 13.2 19.8 26.4 

X-III STANCE X-DlSTfWCE 

t - 7.85 t - 8.6 

FIG. 19. The locations and velocities of the transport elements at t = 5.0, 7.0, 7.85, and 8.6, for A = 0.5 (rp = 3) using the Boussinesq approximation 
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FIG. 20. (a) The positions of the highest (solid lines) and the lowest points (broken lines) on the bubble and spike; and (b) the mean positions of 
the bubble and spike for A = 0.5 (rp = 3) 

which match the results of our computations of the extreme 
points of the layer. In the limit, as rP approaches infinity, the 
spike would have a constant acceleration equal to that of 
gravity, i.e., the slope of the curve would be unity. For 
rP = 9, the slope of the curve from Fig. 13b is 0.94. 

IV.4.4. Atwood number = 0.5 with Boussinesq 
approximation. This approximation is implemented by 
neglecting the effect of inertial acceleration, du/dt, with 
respect to the gravitational acceleration. The simulations 
are performed for rp = 3, A = 0.5. The locations and 
velocities of the vortex elements are shown in Fig. 19 at the 
same times as in Fig. 14. Neglecting the inertial terms leads 
to a symmetric growth of the structures which remain 
centered at y =O. Concomitantly, equal volumes of the 
heavy and the light fluids are entrained into the eddies, and 
the spike and bubble penetrate equally into the heavy and 
light fluids, respectively. 

The symmetry of the motion of the bubble and the spike 
is shown further by Fig. 20, where the vertical displacement 
of the two bounding layers of the variable density fluid on 
both the bubble and the spike sides are shown. Shown also 
is the average location of all the computational elements at 
the top of the bubble and the bottom of the spike. Both plots 
confirm the symmetry between the two sections of the wave 
in the absence of baroclinic vorticity generation, contrary to 
what is revealed in Fig. 11, namely that in the non- 
Boussinesq approximation, the two sections of the wave 
grow asymmetrically beyond the linear range (it should be 
mentioned here that in the non-Boussinesq approximation, 
while the trend is the same, the asymmetry between the 
bubble and the spike is exaggerated as the density ratio 
between the two streams increases). 

A very small asymmetry between the motion of the two 
sections, not detectable in Fig. 20, is indicated by Fig. 21, 
where the mean velocities of the bubble and the spike are 
shown. The small difference between the motion of the 
bubble and the spike can be attributed to the difference 
between the density of the layers in the two sections (note 
that in our calculations, the vorticity generation term in this 
case is (-VP x j/p), not (-VP x j/p,) as in the conven- 
tional Boussinesq approximation, which leads to some 
difference between the rate of vorticity generation in the 
bubble and the spike). 

As indicated before, a kinematical argument based on 
vorticity generation and distribution can be used to explain 

Buble 

1 I I 1 I 
0.0 2.5 5.0 7.5 10.0 12.5 

TIME 

FIG. 21. The mean bubble and spike velocity as a function of time for 
A = 0.5 (rp = 3), using the Boussinesq approximation. 
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FIG. 22. The least squares fit of the vorticity distribution along the central layer at t = 5.0,7.0,7.85, and 8.6 for A = 0.5 (rp = 3): (a) using Boussinesq 
approximation; (b) without using Boussinesq approximation. 

these observations. Vorticity distribution along the central 
layer in the Boussinesq and non-Boussinesq approximation, 
both for the same Atwood number, are shown in Figs. 22a 
and b, respectively. In the former, the maximum absolute 
values of the vorticity on the spike and the bubble are 
almost equal. The small difference between the two peaks is 
due to the difference in density among the layers. Since 
baroclinic effects are absent, gravity generated vorticity is 
not counteracted by the baroclinic vorticity thus leading to 
a symmetric distribution. This maintains higher vorticity in 
the bubble than in t.he spike. On the other hand, because of 
baroclinic vorticity generation due to inertial acceleration in 

the non-Boussinesq case, the vorticity is higher within the 
spike than the bubble, as shown in Fig. 22b. 

V. CONCLUSIONS 

Simulations of the Rayleigh-Taylor flow generated 
within a material layer, across which finite temperature 
gradients exist, are reported. Simulations are performed 
using the transport-element method; a grid-free Lagrangian 
field method constructed on the basis of the accurate dis- 
cretization of flow gradients among finite area elements, and 
the transport of these elements along particle trajectories. 
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FIGURE t2-Continued 

The method is adaptive by construction. Gradient transport 
is made conservative by relating the changes in the local 
gradients to the distortion of the flow map via kinematical 
relations. The method captures the generation of small 
scales and strong scalar gradients by maintaining the 
distance between neighboring elements in the direction of 
principle strain below a maximum value and by reducing 
the core size of the elements to conserve the material area. 
Inertial acceleration is used to monitor vorticity generation. 

Solutions at the early stages of development are validated 
by comparing the predictions of the initial growth rate of 
the numerical simulation to the results of the linear stability 
theory of a finite thickness Rayleigh-Taylor flow. These 

solutions are also used to show the effect of the layer thick- 
ness on its stability properties. Solutions at the late stages 
are compared with numerical results reported previously for 
the case of a thin sheet approximation when possible. These 
solutions are used to show the effect of the baroclinic 
vorticity generation on the flow. 

Within the nonlinear stages, we find that entrainment 
currents are generated within the material layer between the 
highest and the lowest temperature contours. The strength 
of these currents, which lead to the amalgamation of the 
vorticity generated within the layer into large structures on 
the two sides of the evolving mushrooms, is proportional to 
the density ratio. This amalgamation process may or may 
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not be accompanied with a rollup depending on the density and, using Eq. (A3), Eq. (A4), and noting that 
ratio. The asymmetry of the large structures which form on n.(gxw)=O, 
both sides of the mushroom is attributed kinematically to 
the inertial, or baroclinic, forces. This is the major contribu- dn 
tion of non-Boussinesq effects. The entrainment associated ii- 

- -n.Vu-nxo+(n.(n.Vu))n. (A5) 

with the formation of the structures is the primary 
mechanism of mixing in Rayleigh-Taylor flow. Let 1 be the unit normal to n. In Eq. (A5), we decompose the 

vector n . Vu into its components along n and 1: 

APPENDIX: DERIVATION 
OF EQS. (23) AND (25) dn 

z= -(l.(n.Vu))Z-nxw. 

In an inviscid incompressible flow, the motion of a non- 
diffusive non-reactive scalar s is governed by Next, we decompose VU into its symmetric and anti- 

symmetric parts, Vu = Vu” + V2.P: 
ds 
;i;=o. (Al) dn 

ii- 
- -(l.(n.Vu,))Z-(f.(n.Vu”))l-nxo. 

The conservation equation of the scalar gradient g = VS can s. 
be derived by taking the gradient of Eq. (Al), using the 

mce n . Vu” = -n x o/2 is in the direction of I, then 

vector identity: V(A . B) = A . VB + B. VA + A x (V x B) + dn 
B x (V x A), and noting that V x g vanishes identically: z= -(l.(n .Vu’))Z-y. (‘46) 

ds 
z- 

- -g.vu-gxo. (A2) Equation (A6) shows that the change of the unit normal of 
the scalar gradient can be decomposed into a solid body 
rotation, expressed locally in terms of the magnitude of the 

Thus, s remains constant along a particle path while g vorticity, and a pure shear, expressed in terms of the sym- 

changes due to stretch and rotation by the local strain field metric part of the rate of strain tensor. An expression for the 

and the vorticity, respectively. Equation (A2) can be variation of the magnitude of the scalar gradient 1 gl can be 

directly integrated to yield the new values of the gi)s, derived using the expansion of dg/dt and Eq. (A5), 

&i 
z= -gi.vu;-g;xoi. 

In what follows, we construct an alternative scheme for 
updating g,‘s which avoids computing Vu at the center of 
the elements and the numerical integration of Eq. (A3). 

Letg=nIgl,wheren=g/lgJ.Wehave 

which implies that 

dlgl & 
dt=nTt. 

Expanding dgjdt, 

& 0 Id) -=-= 
dt dt 

lgl dn I dlgl n 
dt dt 

dlgl dn 
-n= -[gl (n.Vu+nxo+;, 

dt 

which yields 

dlgl Tn= -lgl (n.(n.Vu))n. (A7) 

Equation (A7) shows that the magnitude of the gradient 
changes according to the amount of deformation in the 
direction of the gradient. In what follows, we relate d( I gl )/dt 
to the straining of a material element initially in the 
direction normal to g. 

The variation of a small material vector 6 1 is governed by 
the equation 

d61 
dt=sl.vu, 

and if 61 is chosen to lie on a surface of constant s at t = 0. 
(A4) Equation (Al) implies that 61 will always remain on this 

surface. If 1’ denotes the unit vector in the direction of 61, 



SIMULATION OF ROLLUP AND MLXING 27 

then n . I’ = 0 at all times, i.e., I’ = 1. If we now decompose 61 0. M. Knio’s Ph.D. thesis. The work was supported by the Air Force Office 

as 6Z= 1611 1, a similar procedure to that for g yields the of Scientilic Research Grant 84-0356, The National Science Foundation 

expressions Grant CBT-8709465 and the Department of Energy Grant DE-FGO4- 
87AL44875. Computer support is provided by the John von Neumann 
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